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ABSTRACT

In the dynamics modeling of a flexible structure, finite element analysis employs
reduction techniques, such as Guyan's reduction, to remove some of the "insignificant"

physical coordinates, thus producing a dynamics model that has smaller mass and stiffness
matrices. But this reduction is limited in the sense that it removes certain degrees of

freedom at a node point, instead of node points themselves in the model. From the
standpoint of linear control design, the resultant model is still too large despite the
reduction. Thus, some form of model reduction is frequently used in the control design by

approximating a large dynamical system with a fewer number of state variables. However,
a problem arises from the placement of sensors and actuators in the reduced model, because
a model usually undergoes, before being reduced, some form of coordinate transformations
that do not preserve the physical meanings of the states. To correct such a problem, a
method is developed that expresses a reduced model in terms of a subset of the original
states.

The proposed method starts with a dynamic model that is originated and reduced in
finite element analysis. Then the model is converted to the state space form, and reduced
again by the internal balancing method. At this point, being in the balanced coordinate
system, the states in the reduced model have no apparent resemblance to those of the
original model. Through another coordinate transformation that is developed in this paper,
however, this reduced model is expressed by a subset of the original states.

INTRODUCTION

In the dynamics modeling of a structure, finite element analysis employs reduction
techniques, such as Guyan's reduction, to remove some of the "insignificant" physical
coordinates [6, Guyan 1965; 10, Irons 1965], thereby producing a model that has smaller
mass and stiffness matrices. But this reduction is limited in the sense that it reduces

degrees of freedom at a node point, instead of the number of node points in the model.
From the standpoint of linear control design, the resultant model is still too large despite the
reduction, because the size of a model depends on degrees of freedom at each node and the

number of node points.
In the control literature, there has been extensive research and publication on model

reduction methods [5, Genesio and Milanese 1976; 7, Hickin and Sinha 1980], in which

the primary objective is the approximation of a large dynamical system by fewer state
variables with minimal change on the input-output characteristics. For example, the

aggregation method [ 1, Aoki 1968] reduces a model by "aggregating" the original state
vector into a lower dimensional vector, in which the concept of aggregation is a

generalization of that of projection and related to that of state vector partitioning. Skelton
and Hughes [ 15, 1980] derived modal cost analysis for linear matrix second order systems
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thatareexpressedin the state space form. The decomposition of quadratic cost index into
the sum of contributions from each modal coordinate is used to rank the importance of the
structure's modes. The internal balancing method [12, Moore 1981; 13, Pernebo and
Silverman 1982; 14, Shokoohi, Silverman, and Van Dooren 1983; 4, Gawronski and
Natke 1986; 3, Gawronski and Natke 1987] is based on "measures" of controllability and

observability, which are defined by the controllability and observability grammians in
certain subspaces of the original state space. Then the most controllable and observable
part is used as a low-order approximation for the model. Hyland and Bernstein [8, 1985]
have derived the fast order conditions for quadratically optimal reduced order modeling of
linear time invariant systems, in which they show how the complex optimality conditions in
[16, Wilson 1970] can be transformed, without loss of generality, into much simpler and
more tractable forms. The transformation is facilitated by exploiting the presence of an
oblique (i.e., nonorthogonal) projection that was not recognized in [ 16, Wilson 1970] and
that arises as a direct consequence of optimality.

From a close examination of the various reduction methods employed by the two
distinctly different communities, it follows that a finite element dynamic model can be
further reduced by the reduction methods used in the control community, provided that it is

first converted into the state space form by assigning two states---displacement and
velocity---to each degree of freedom at the node. However, a problem arises from
subsequent structural control design, especially from the placement of sensors and
actuators in the reduced model, because a model usually undergoes, before being reduced,
some form of coordinate transformation through which a reduced model usually results in a

subspace quite different from the original state space. Consequently, it is difficult,
sometimes impossible, to recognize any connection between the states of the reduced model
and those of the original model.

In the internal balancing method, we discovered that with an additional coordinate
transformation it is possible to express the reduced model in terms of a subset of the
original states. The method described in this paper proceeds with a finite element model of
a structure that was already reduced by Guyan's reduction [6, Guyan 1965]. The model is
then converted to the state space form, and is reduced again by the internal balancing
method. At this point, being in the balanced coordinate system, the states of the reduced
model have no apparent resemblance to those of the original model. But, through another
coordinate transformation derived from the states that are deleted during reduction, this
reduced model is expressed by a subset of the original states.

The procedure is illustrated through two examples. The first example is
hypothetical, simple, yet quite effective for demonstration. The second example starts with
a finite element model, and finally arrives at the reduced model that has a fewer number of
node points. Throughout the two examples the impulse responses of several states are
compared in the time domain.

MODEL REDUCTION BY THE INTERNAL BALANCING METHOD

The structural dynamic model in this paper is assumed to result from finite element
analysis and have the following form:

M_ + D/! + Kq = f (1)

where M, D and K are the nxn real, symmetric, positive definite matrices reflecting the
mass, damping and stiffness properties. The nx 1 vector q is the displacement vector;, that
is, each element describes the position of a node. The overdots denote differentiation with
respect to dine. The nxl vector frepresents the external forces applied to the structure. In
addition, the system is assumed to be asymptotically stable (hence, the definiteness
requirement on M, D and K).

Eq. (1) is fast converted into the state space form such that

x = Ax + Bu (2)

793



Uc =[B

and

where the state vector x and the state malrix A are defined by

(3)
Here, I denotes the nxn identity matrix, 0 the nxn matrix of zeros, and M -1 the inverse of
the nonsingular mass ma_ix M. The matrix B is called the input matrix and has a form
determined by the location of the applied forces f. The vector u, often called the control
force, has the form:

From the conversion, the dimension of u has now become 2nxl, and the dimension of A
2nx2n. If u is a scalar, i.e., if the input has the same time history at each node, then B
becomes a 2nxl vector that determines the location and the magnitude of an actuator. At
this point it is necessary to indicate which states are to be measured or monitored by
selecting an output matrix C such that

y(t) = Cx(t) (5)

where y(t) is a vector consisting of those states that are to be measured. Since B and C are
directly related to the locations of measurement and applied force, they influence the degree
of controllability and observability of the system.

The system def'med by A, the choice of outputs defined by C, and the location of
applied forces defined by B, must all be such that the rank of

"1

AB "" Az'_-IBJ (6)

C]CA

Uo -- i

CA_--1 (7)

are 2n. That is, the system deirmed by (A,B,C) must be both controllable and observable.
For most structural models in which each part is physically connected with another, the
system is controllable and observable for any single applied force and any single state
measurement (see, for instance, [9, Inman 1989]).

The concepts of controllability and observability are essential to the balanced model
reduction. First, each state is examined on its degree of observability--the amount of
contribution by each state to the measurement of the system response, and is also examined
on its degree of controllability--the effect of applied force on the system response. The
balanced reduction method then suggests that the states that do not affect the response
significantly be removed from the model, producing the desired reduced order model. In
this way, the method attempts to f'md a model of the smallest size that best captures the

dynamics of the structure.
The controllability and observability grammians [12, Moore 1981; 13, Pernebo and

Silverman 1982], which are varying under coordinate transformations, are used to define
the "measures, of controllability and observability in a certain state space. Moore [12,
1981] has shown that there exists a coordinate system in which the two grammians are
equal and diagonal. The corresponding system representation is called balanced. The
numerical algorithms of how to obtain the transformation matrix are given both by [12,
Moore 1981] and by [11, Laub 1980]. In the remainder of this section the internal
balancing method is briefly summarized for completeness.
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The controllability grammian, denoted by W e, and the observability grammian,

denoted by W o, are defined as:

We = eAt BB T cA t dt

and
(8)

W° = f0**cArt CTC eAt dt
(9)

where eAt is the matrix exponential function defining the state transition matrix of the
system. These grammians provide a measure of how controllable and how observable a
structure is with the given input and output configuration. And their values are dependent
on the coordinate system in which they are evaluated.

If we denote by P the transformation of the system into the balanced coordinate
system, and if we denote by Wo(P) and We(P) the grammians defined in the balanced

coordinate system, then the balanced system is def'med by A -- P-lAP, 13 = P-1B, C = CP,

and x = P-ix. In addition, the two grammians are equal:

Wc(P ) = Wo(P ) = diag{ts 1, a 2 ... 02n } (10)

where the t_i denotes the singular values of We(P). By arranging the singular values in

descending order and permuting the states correspondingly, the states in _ are arranged

according to their level of controUability and observability; in other words, cr1 being the

largest, _1 is the most controllable and most observable state.

The method first partitions the state, input and measurement matrices on the basis of

the magnitude of the singular values. For some index 2n-k, ts2.n_k would be much smaller

than the preceding singular value t_za.k_ 1. Thus the vector i can be partitioned as

LXdj (11)

where ]_r contains (2n-k) states that are to be retained in the reduced model, and Xd contains

k states to be discarded in the model reduction because they correspond to small values of

_i. These discarded coordinates are least controllable and observable; that is, they have
least effect on the response of the system. Accordingly, the balanced system is partitioned
as

%j x.j

Y-[Cr C]d] [:Xr]

(14)

where _ is a (2n-k)x(2n-k) matrix representing the reduced model in the balanced

coordinate system. The reduced model (_t r, 13r, Cr' it) of order (2n-k) thus results from

the balanced representation by deleting k number of the least controllable and observable
states. In this way, the method produces the reduced model that contains the most
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significant dynamics of the structure with respect to the measurements and the applied
forces, as defined by the matrices B and C.

The relative error in this type of model reduction has been defined by [12, Moore

1981]:

Relative error =

N/ 2O i

i = 2n-k+l

(12)

It provides a quantitative measure of error introduced by the reduced model in calculating
the response of the system.

REDUCED MODEL IN PHYSICAL COORDINATES

A problem that has been rarely addressed in the model reduction is the physical
interpretation of the reduced model in conjunction with the original model. Apparently the

reduced state vector Xr in the balanced representation bears no obvious connection with the

physical position vector q of Eq. (1). In fact, it may, in theory, result in all the position
states being deleted, leaving only velocity states. But for structural control and
measurement applications, it is desirable to provide the designer with a clear, physical

relationship between the original position vector q and the reduced state vector _r"

Such a relationship is attained by using the fact that the balanced states are linear
combinations of the original states. Symbolically this is written as:

2n

11 = XClj xj
j=l

2n

izn-k = X C_2n-k)Jxj
j=l

211

X2n-(k-1) = X

j=l

c(2__k+1)j xj --¢ 0

2n

X2n = X C2nj Xj "--) 0

j---1

(15)

where cij's are the coefficients of linear combinations of {x 1, x 2, ..., X2n}. Here the last k

states are set to zero because they represent the least significant states in the balanced
system [12, Moore 1981]. That is, the response with the given input and output
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configurationis leastaffectedbythesestates.Settingeachof these summations equal to

zero is equivalent to imposing k constraints on the original 2n states, {x l, x 2..... X2n}.

Thus, the k states among the original 2n states can be removed, with model reduction error,
by the k constraints resulting from the reduction. In other words, one can construct a
reduced-order model by selecting (2n-k) states out of the original 2n states. If the (2n-k)

T

selected states from the original system are denoted by Xr = [xj_ xj2 "'" xj_] and the (2n-

k) states of the balanced system by i r = [_1 _2 "" _2n-k ]'r, then the states in i r are linear

combinations of the states in Xr. Thus there exists a new transformation matrix Pr of order

(2n-k)×(2n-k) such that x r = Pr Xr"

The above constraints and the resulting transformation allow the designer or analyst

to specify which nodes (i.e. which elements of q) of the model to be retained in the model
reduction.

Now that it is shown that some members of the original states constitute the state
vector Xr of the reduced model, the next question is how many states and which states to

select from the original states. The answer to how many states, i.e., the order of the
reduced model, depends on the designer's willingness to gain a smaller sized model at the
expense of accuracy. The relative error in Eq. (12), defined by the singular values of
Eq. (10), indicates a trade-off between error and model size. Once the order is
determined, the next task is which states to select from the original states. There is no

established methodology in dealing with this problem. However, strictly from the physical
considerations of a given structure, the following two observations were made. First, if
we recall that a pair of states--displacement and velocity--were assigned to each degree of
freedom at the node when the dynamic equation (1) was converted into the state equation
(2), then selecting a certain degree of freedom at a certain node is equivalent to selecting the

paired states associated with that particular degree of freedom. Therefore, the paired
velocity and displacement states must be either selected or deleted together, because they
signify one degree of freedom at a node in the actual structure. Another observation is that
for the nodes to which actuators and/or sensors are attached, the paired states representing

the degree of freedom to whose direction the actuators and/or sensors function must be
selected to ensure that the reduced model is under the same input and output condition as

the original physical model.
In the following it is shown that the matrix Pr consists of certain rows and columns

of the original transformation matrix P, and that there is a systematic way of constructing Pr

from P. First, by writing the coordinate transformation, x = P i, in matrix elements
2n

j=l (16)

next, by the model reduction,

x2n_(k_l) --_ O, .... _n -'_ 0 (17)

the original states are expressed as linear combinations of the first (2n-k) balanced states

{_1, _2, ..-, _2n-k}. The last k columns of P thereby can be removed from the expression:

x [P2nl "'" P2n(2n-k)J X2n-k (18)
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Then by selecting {Jl ..... J2n-k} rows that correspond to the rows of the selected original

states, the new transformation is established between x r and i r

xJll [ Pill
i = : pJi kl[•..  21-k

(19)

Xr = Pr Xr

where Pij's are the elements of the original transformation matrix P. Finally, the reduced
order system (Ar, Br, Cr, Xr)

/_(t) = A_r(t) + BrU(t)

Yr(t) = CrXr(t)

is expressed in terms of a subset x r of the original state vector x where A r

(20)

Pr/_r -1Pr '

B, = Pr I_,, and Cr : Pr-1 Cr"

In summary, the model reduction procedure described in this paper can be
illustrated as follows:

P

(A, B, C, x) ¢:_ (_,, I_, C, i) ...order 2n

IJ. model reduction

Pr

(A r, B r , Cr, x r ) ¢:_ (A r , B r, C r , Xr )
...order 2n-k

Original Balanced

State Space System (21)

where x r consists of (2n-k) elements of x, and i r consists of (2n-k) elements of x. In

addition, the system (/k r, I3r, Cr' it) is the balanced representation of the system (Ar, Br,

Cr, Xr).
The following examples illustrate the proposed model reduction method.

EXAMPLE (1)

The procedure discussed in this paper is demonstrated through the example used by
[12, Moore 1981]. The system (A, B, C, x) is given

[ 00150100[1A = -245l B =

1Olgj0 1

C=[0 0 0 1]

with an impulse input u = _(t) of different magnitudes applied at the states X1 and x 2. Then
the transformation matrix P is calculated to be
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29.090 -4.056 0.553 -0.310"

|14.784 5.449 -0.557 0.426
P=| 2.323 2.093 -0.030 -0.122

/

L 0.118 0.131 0.056 0.007

Here let us suppose that we decide to delete x3, so that the reduced model contains the three

original states, {xy, x2, x4}. The transformation Pr is readily obtained by selecting the 1st,

2 nd, and 4 th rows and removing the 4 th column of P,

-29.090-4.056 0.553

Pr = 14.784 5.449 -0.557

0.118 0.131 0.056

The system matrices of the reduced model are

0.090

Ar = Pr Ar -IPr = 0.876

-0.069

C r =Pr IC,=[0 0 1]

The reduced model inthephysicalcoordinateisthus

i 2 =A r x2 +BrU Y =Q x2

X4 X4 X4

--0.290 -135.898]

0.398 -264.391[

0.274 -16.537 J

By setting u = S0, the impulse response of each original state is plotted in comparison

with the difference between the two impulse responses of the state, one by the full order
model and the other by the reduced order model, as shown in Figures 1-3. The difference
is obtained by subtracting the response of the state in the reduced model from that of the
same state in the original system.

4.5

3.5 _ Resl_onse of the original state

2.5

1.5 _0.5

-0.5 I I i I i I i

0 2 4 6 8

Time (sec)
Figure 1 State #1 in Example (1)
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1.5

0.5

nse of the original state

ce

-0.5 , I , I , I •
0 2 4 6 8

Time (sec)
Figure 2 State #2 in Example (1)

0.0175

0.0125

0.0075

0.0025

-0.0025
0 8

enSe of the original state

, I i I , '

2 4 6

Time (sec)

Figure 3 State #4 in Example (1)

In Figures 1-3, the difference is nearly zero, thus indicating that the reduced third-order
model is indeed a respectable realization of the original fourth order system.

800



EXAMPLE (2)

The same procedure is applied to the following finite element model of a cantilever
beam. Here the design nature of the proposed method is illustrated by assuming that
actuators, machines, or sensors, will be placed at nodes 1, 4, and 5 so that they become

important node points to be retained in the final model

5X5 Nodes

X6 _ _ X9 X10

Figure 4 A cantilever beam with 5 nodes

Velocities

Displacements

The impulse input is applied through nodes 1, 4, and 5 in this example. Suppose that we
decide to delete the states x 2, x3, x 7, and x 8, so that the reduced model can be expressed by

the remaining six states. The diagonal mass matrix is obtained by lumping mass at the
node points, and the stiffness matrix by finite element analysis. The damping matrix is
made up with a damping coefficient 0.002 for each mode. In Figures 4-7 the responses of

the original states at Node 1 and 5 are plotted together with their differences between the
responses of the states in the original system and those of the states in the reduced system.
The differences are obtained in the same way as in Example (1).

4

0

-2

-4
0.0

Response of the original state

• i I i I
1.0 2.0

Time (sec)

Figure 5 State #5 in Example (2): Velocity at the tip
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Response of the original state

1 / Difference

-1
0.0 1.0 2.0

Time (sec)

Figure 6 State #1 in Example (2): Velocity at Node #1

l
_¢:x, 0.00

-0.02

-0.04
0 1 2

Time (sec)
Figure 7 State #-6 in Example (2): Displacement at Node #1

0.6

0.4 /_ponse of the original state

0.0 -- -- ...... -....

-0.4

-0.6 i I i I i I
0 1 2 3

Time (sex:)

Figure 8 State #10 in Example (2): Displacement at the tip
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In Figures 4-7, the difference is almost zero in comparison to the response of the original
state. Some nonzero differences are detected in the transient region of the response, which
indicates that the reduced model is closer to the full-order model in the steady state response

region.

CONCLUSION

A model reduction method that is based on the concept of the internal balancing method is

implemented along with another transformation derived from the states that are deleted
during the reduction in order that the reduced model may represent the original physical
model with fewer states than the original model requires.

The proposed method in this paper takes a finite element model that is reduced by
Guyan's reduction, converts it into the state space form, and applies the balanced model
reduction. And, through another transformation that is derived from the deleted states in
reduction, the model is finally expressed by a subset of the original states. The method

thereby provides a clear, physical relationship between the states in the reduced model and
those in the original model. The states in the reduced model axe selected directly from the

original states, thus retaining the same physical meanings as in the original model. This
appears to be a new and significant development in the area of model reduction. This
method yields not only reduced order state space representations, but also, at the same
time, reduced order transfer functions.

The application of this reduction method to a large finite element model generates a
reduced model with a fewer number of nodal points, so that the analytical model

improvement can be performed on the reduced model instead of a full-scale finite element
model, which has been a common practice (for example, [2, Berman and Nagy 1983]).
The final reduced model is of a more attractive size for dynamic simulations and subsequent

structural control design.
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